Energy-Efficient Scheduling with Time and Processors Eligibility Restrictions

نویسندگان

  • Xibo Jin
  • Fa Zhang
  • Ying Song
  • Liya Fan
  • Zhiyong Liu
چکیده

While previous work on energy-efficient algorithms focused on assumption that tasks can be assigned to any processor, we initially study the problem of task scheduling on restricted parallel processors. The objective is to minimize the overall energy consumption while speed scaling (SS) method is used to reduce energy consumption under the execution time constraint (Makespan Cmax). In this work, we discuss the speed setting in the continuous model that processors can run at arbitrary speed in [smin, smax]. The energy-efficient scheduling problem, involving task assignment and speed scaling, is inherently complicated as it is proved to be NP-Complete. We formulate the problem as an Integer Programming (IP) problem. Specifically, we devise a polynomial time optimal scheduling algorithm for the case tasks have a uniform size. Our algorithm runs in O(mnlogn) time, where m is the number of processors and n is the number of tasks. We then present a polynomial time algorithm that achieves an approximation factor of 2(2 − 1 mα ) (α is the power parameter) when the tasks have arbitrary size work. Experimental results demonstrate that our algorithm could provide an efficient scheduling for the problem of task scheduling on restricted parallel processors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems

Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...

متن کامل

Pre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems

Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...

متن کامل

An Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm

In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...

متن کامل

Green Energy-aware task scheduling using the DVFS technique in Cloud Computing

Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...

متن کامل

Scheduling unit-length jobs with machine eligibility restrictions

We consider uniform parallel machine scheduling problems with unit-length jobs where every job is only allowed to be processed on a specified subset of machines. We develop efficient methods to solve problems with various objectives, including minimizing a total tardiness function, a maximum tardiness function, total completion time, the number of tardy jobs, the makespan, etc.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013